Probability Theory and Stochastic Modelling 104

Sergey Bobkov
Gennadiy Chistyakov
Friedrich Gotze

Concentration
and Gaussian
Approximation
for Randomized
Sums

@ Springer



Probability Theory and Stochastic Modelling

Volume 104

Editors-in-Chief

Peter W. Glynn, Stanford University, Stanford, CA, USA
Andreas E. Kyprianou, University of Bath, Bath, UK
Yves Le Jan, Université Paris-Saclay, Orsay, France
Kavita Ramanan, Brown University, Providence, RI, USA

Advisory Editors

Seren Asmussen, Aarhus University, Aarhus, Denmark

Martin Hairer, Imperial College, London, UK

Peter Jagers, Chalmers University of Technology, Gothenburg, Sweden
Ioannis Karatzas, Columbia University, New York, NY, USA
Frank P. Kelly, University of Cambridge, Cambridge, UK

Bernt @Oksendal, University of Oslo, Oslo, Norway

George Papanicolaou, Stanford University, Stanford, CA, USA
Etienne Pardoux, Aix Marseille Université, Marseille, France
Edwin Perkins, University of British Columbia, Vancouver, Canada
Halil Mete Soner, Princeton University, Princeton, NJ, USA



Probability Theory and Stochastic Modelling publishes cutting-edge research
monographs in probability and its applications, as well as postgraduate-level
textbooks that either introduce the reader to new developments in the field, or
present a fresh perspective on fundamental topics.

Books in this series are expected to follow rigorous mathematical standards, and
all titles will be thoroughly peer-reviewed before being considered for publication.

Probability Theory and Stochastic Modelling covers all aspects of modern
probability theory including:

Gaussian processes

Markov processes

Random fields, point processes, and random sets
Random matrices

Statistical mechanics, and random media
Stochastic analysis

High-dimensional probability

as well as applications that include (but are not restricted to):

e Branching processes, and other models of population growth

e Communications, and processing networks

Computational methods in probability theory and stochastic processes, including
simulation

Genetics and other stochastic models in biology and the life sciences
Information theory, signal processing, and image synthesis
Mathematical economics and finance

Statistical methods (e.g. empirical processes, MCMC)

Statistics for stochastic processes

Stochastic control, and stochastic differential games

Stochastic models in operations research and stochastic optimization
Stochastic models in the physical sciences

Probability Theory and Stochastic Modelling is a merger and continuation of
Springer’s Stochastic Modelling and Applied Probability and Probability and Its
Applications series.



Sergey Bobkov ¢ Gennadiy Chistyakov
Friedrich Gotze

Concentration and
Gaussian Approximation
for Randomized Sums

@ Springer



Sergey Bobkov

School of Mathematics
University of Minnesota
Minneapolis, MN, USA

Gennadiy Chistyakov
Fakultét fiir Mathematik
Universitét Bielefeld
Bielefeld, Germany

Friedrich Gotze
Fakultét fiir Mathematik
Universitit Bielefeld
Bielefeld, Germany

ISSN 2199-3130 ISSN 2199-3149  (electronic)
Probability Theory and Stochastic Modelling
ISBN 978-3-031-31148-2 ISBN 978-3-031-31149-9 (eBook)

https://doi.org/10.1007/978-3-031-31149-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher,
whether the whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-031-31149-9

Preface

Given a random vector X = (Xj,...,X,) on a probability space (€2, #,P) with
values in the Euclidean space R", n > 2, define the weighted sums

n
(X,0) =) 0uXs,
k=1

parameterized by points 6 = (1, . .., 6,) of the unit sphere $"~! in R" (with center
at the origin and radius one). In general, the distribution functions of weighted sums
(X, 0), say

Fg(x) =P{(X,0) <x}, xeR,

essentially depend on the parameter 6. On the other hand, a striking observation
made by V.N. Sudakov [169] in 1978 indicates that, under mild correlation-type
conditions on the distribution of X, and when n is large, most of the Fy’s are
concentrated around a certain “typical” distribution function F. Here “most” should
be understood in the sense of the normalized Lebesgue measure s,_; on S"!. A
more precise statement can be given, for example, under the isotropy condition

E(X,0)> =1, QeS"!,

which frequently appears in many applications. Similar to the classical central limit
theorem, Sudakov’s result thus represents a rather general principle of convergence,
with various interesting aspects. A related phenomenon was discovered later by
Diaconis and Freedman [79] in terms of low-dimensional projections of non-random
data (cf. also von Weizsdcker [176]).

The phenomenon of concentration of the family {Fg}ycgn-1 naturally begs the
question of closeness of Fyg to F for all 6 from a large part of the sphere in terms
of standard distances d in the space of probability distributions on the real line. A
canonical choice would be the Kolmogorov (uniform) distance

p(Fg, F) = sup |Fg(x) = F(x)].
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Less sensitive alternatives would be the Lévy distance
L(Fy, F) =inf{h >0:F(x—h)—h<Fg(x) < F(x+h)+h forall x € R},

as well as the distances in L”-norms

d,(Fg,F) = (/

—00

o)

I/p
Fo(x) - Fl”dx) ", p>1,

among which W = d; and w = d, are most natural. For a given distance d, the
behavior of the average value m = Ey d(Fy, F), as well as the deviation from the
mean in spherical probability s,,_1{d(Fg, F) > m+r}, is of interest as a function of
nandr > 0.

In this context the model of independent random variables X; has been intensively
studied in the literature. When X} are independent and identically distributed (the
i.i.d. case) and have mean zero and variance one, the distribution functions Fy are
known to be close to the standard normal distribution function

1 X o2
D(x) = —/ e 2 dy,
v _

2 0

as long as maxy, |0 | is small. If the 3-rd absolute moment 33 = E | X;|? is finite, the
Berry-Esseen theorem allows us to quantify this closeness by virtue of the bound

n
p(Fo, ®) < cB3 ) 10:I’,
k=1

which holds for some absolute constant ¢ > 0. Although the right-hand side is greater
than or equal to c¢f33/+/n for any 6 € $"~!, the bound above implies a similar upper
bound on average: Eg p(Fg, ®) < ¢’B3/n.

The i.i.d. case inspires the idea that, under some natural moment and correlation-
type assumptions, most of the Fy might also be close to the standard normal law.
But, in light of Sudakov’s theorem, this is equivalent to a similar assertion about
the typical distribution — a property which is determined by the distribution of the
Euclidean norm

IX] = (X3 4 X3) P2

Indeed, in general, the typical distribution can be identified as the spherical average

FO) = [ a0 ds,i(0) = BoFa(o),

which may be alternatively described as the distribution of |X| 8, where the first
coordinate of a point on the sphere is treated as a random variable independent of X.
(In the sequel, Ey is always understood as the integral with respect to the measure
$,-1.) Since 61+/n is nearly standard normal, F will be close to @ if and only if the
random variable R* = % |X|? is approximately 1 in the sense of the weak topology. In
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many situations, this can be verified directly by computing, for example, the variance
of R?, while in some others it represents a non-trivial “thin shell” type concentration
problem.

This book aims to describe the current state of the art concerning Sudakov’s
theorem. In particular, using the metrics d mentioned above, we will focus on the
derivation of various bounds for Eg d(Fg, F) and Eg d(Fg, @), as well as on large
deviation bounds. Our investigations rely on several basic tools. Besides classical
techniques of Fourier Analysis (such as Berry—Esseen-type bounds), many argu-
ments rely upon the spherical concentration phenomenon, that is, concentration
properties of the measures s,_; for growing dimensions 7, including the associated
Sobolev-type and infimum-convolution inequalities. Concentration tools are also
used for various classes of distributions of X when trying to approximate the typical
distribution F by the standard normal law.

In order to facilitate the readability of the presentation of the results related to
the Sudakov phenomenon, we decided to make the presentation more self-contained
by including these auxiliary techniques in the first three chapters. Thus we describe
in a separate part (Part II) some general results on concentration in the setting of
Euclidean and abstract metric spaces. Most of this material can also be found in other
publications, including the excellent survey and monograph by M. Ledoux [129],
[130], and the recent book by D. Bakry, I. Gentil, and M. Ledoux [8].

The spherical concentration is discussed separately in Part III. It is a classical
well-known fact (whose importance was first emphasized by V. Milman in the early
1970s) that any mean zero smooth (say, Lipschitz) function f on the unit sphere
S"~! has deviations at most of the order 1/~/n with respect to the growing dimension
n. Moreover, as a random variable, 4/ f has Gaussian tails under the measure s,,_;.
In addition to this spherical phenomenon, we present recent developments on the
so-called second order concentration, which was pushed forward by the authors as
an advanced tool in the theory of randomized summation. Roughly speaking, the
second order concentration phenomenon indicates that, under proper normalization
hypotheses in terms of the Hessian, any smooth f on S"~! orthogonal to all affine
functions in L?(s,_;) actually has deviations at most of the order 1/n. Moreover,
as a random variable, n f has exponential tails under the measure s,_;. Part III also
contains various bounds on deviations of elementary polynomials under s,_; and
collects asymptotic results on special functions related to the distribution of the first
coordinate on the sphere.

These tools are needed to quantify Sudakov’s theorem in terms of several moment
and correlation-type conditions, and for various classes of distributions of X. With
this aim, we shall introduce and discuss the following moment type quantities for a
parameter p > 1,

1
M, = sup (E[(X,0)[")"", m, (B (X, Y)|")"",

fesn-! n

as well as the variance-type functionals
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X2 1/p n
a@,,:\/ﬁ(E‘l | —1‘ ) A = sup Var(Za,]XX)
n Y aj;=1 i, j=1

where Y is an independent copy of X. For example, M, = my = 1 in the isotropic
case, and 0"% = rllVar(|X |?), which can often be estimated via evaluation of the
covariances of Xi2 and ij The relevance of these functionals will be clarified in
various examples; they are also connected with analytic properties of the distribution
pof X expressed in terms of isoperimetric or Poincaré-type inequalities. For example,
there is a simple bound A < 4/ /l% via the spectral gap A, associated to u.

We shall now outline several results on upper bounds for Eg d(Fg, F) and
Eg d(Fg, ®@) involving these functionals for various distances d. They are discussed
in detail in the remaining Parts [V-VTI of this monograph.

o Lévy distance. Here the moments M| and M, will control quantitative bounds
on fluctuations of Fy around the typical distribution F in the metric L providing
polynomial rates with respect to n. Namely, for some absolute constant ¢ > 0 we
have

M +logn

logn 1/3 2/3
e (5) "

EgL(Fg,F)SC 2

Eg L(F 0, F ) <c
e Kantorovich L' transport distance. Here rates can be improved in terms of the
moments M, of higher order. In particular, we have

p—1
EgW(Fg,F) < cp,Myn™% (p>1),

where the constants c¢,, depend on p only. However, a classical rate of 1/+/n from
other contexts will not be achievable via these bounds.

e Kolmogorov distance. Using the variance-type functionals o, it is possible
not only to replace the typical distribution F with the normal distribution function
@, thus proving a law of attraction for Fy, but also to show a standard rate as well,
assuming a finite third moment. Analogously to the classical Berry—Esseen theorem,
it is shown that, if E |X|*> = n and EX = q, then

Eg p(F <1>)<A
opP\lrg, _\/ﬁ

with A = ¢ (m3/ 2 3/ 2 lal) up to some absolute constant c. Here, one may

eliminate the parameter a, by using elementary bounds m3 < M3 and 03 < oy (the
latter requires, however, the finiteness of the 4-th moment). A slightly worse estimate
can also be derived under less restrictive moment assumptions. For example,

ogn

Eg p(Fp, ®) < ¢ (M3 + 0)
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o Trigonometric and other functional models of random variables. Modulo a
logarithmic factor, the upper bounds such as

logn

Eg p(Fo,®) < ¢

turn out to be optimal with respect to n in many examples of orthonormal systems
X = (Xy,...,X,) of functions in L?. These include in particular the trigonometric
system of size n with components

Xok-1(1) = V2 cos(kt),
Xox(t) = V2 sin(kt), -m<t<m k=1,...,n/2 (neven),

with respect to the normalized Lebesgue measure P on Q = (-, ). More precisely,
we derive lower bounds such as

c
Egp(Fo,®) > ———
0 p(Fo, @) Vi (logn)

for some positive ¢ and s independent of n. A similar bound also holds for the
sequence of the first n Chebyshev polynomials on the interval Q = (-1, 1), for
the Walsh system on the Boolean cube {1, 1}? (with n = 27 — 1), for systems
of functions Xy (t1,t) = f(kt; + t2) with 1-periodic f (such functions X; form a
strictly stationary sequence of pairwise independent random variables on the square
Q =(0,1) x (0, 1) under the restricted Lebesgue measure), and some others.

e L? distance. In order to develop lower bounds as above, similar upper and
lower bounds will be needed for the L?-distance w, in combination with upper
bounds for the Kantorovich-distance W. A number of general results in this direction
will be obtained under moment and correlation-type assumptions, as in the case of
Kolmogorov distance p. In fact, in the case of w, the correct asymptotic behavior of
Eg w?(Fg, F) will be derived up to the order 1/n”. For instance, when the random
vector X has an isotropic symmetric distribution and satisfies |X| = /n a.s. (and
thus all o, = 0), one has

1
Eg w’(Fo,F) ~ 7 E(X,V)*
n

with an error term of order 1/n?, and a similar result holds for the Gaussian limit ®
instead of the typical distribution F'. Here, as before, Y denotes an independent copy
of X.

o Improved rates in the i.i.d. case. Returning to the classical i.i.d. model with
EX; =0, ]EXl2 = 1, a remarkable result due to Klartag and Sodin [125] which we
include in this monograph improves the pointwise Berry—Esseen bound as follows

Cﬂ4
b

Eg p(Fo, @) < - P = EX}.
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In fact, this result holds in the non-i.i.d. situation as well with replacement of 84 with
the arithmetic means of the 4-th moments of Xj. This bound can be complemented
by corresponding large deviation bounds. Thus, for typical coefficients, the distances
p(Fg,®) are at most of order 1/n, which is not true in general when the coefficients
are equal to each other!

Moreover, we show that, if the distribution of X; is symmetric, and the next
moment B85 = E | X;|’ is finite, it is possible to slightly correct the normal distribution
@ to obtain a better approximation such as

cps
Eg p(Fg,G) < S
Here, G is a certain function of bounded variation which is determined by S84 and
depends on n (but not on 6).

o The second order correlation condition. Certainly Sudakov’s theorem begs the
question whether or not similar results continue to hold for dependent components
Xk . This is often the case, although the orthonormal systems mentioned above may
serve as counter examples. More precisely, the variance functional A = A(X) turns
out to be responsible for improved rates of normal approximation for Fy’s on average
and actually for most 6’s. When X has an isotropic symmetric distribution, it will be
shown by virtue of the second order spherical concentration that

1
Egp(Fg,q)) < cogn

A,

which thus extends the i.i.d. case modulo a logarithmic factor. The symmetry as-
sumption can be removed at the expense of additional terms reflecting higher order
correlations. In particular, in the presence of the Poincaré-type inequality, we have

cilogn

Eo p(Fo,®) < —= 2",

which may be complemented by corresponding deviation bounds.

e Distributions with many symmetries. Special attention will be devoted to
the case where the distribution of X is symmetric about all coordinate axes and
isotropic (which reduces to the normalization condition EX,% = 1). The A-functional
then simplifies, and under the 4-th moment condition, the Berry—Esseen bound “on
average” takes the form

I
Eg p(Fg,®@) < £ o8t

(max EX,‘(1 + Vg),
k<n

where
Vo= sup Var(6;X?+---+6,X2).
gesn-!
If additionally the distribution of X is invariant under permutations of coordinates,
it yields a simpler bound
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clogn

Eg p(Fg,®) < (EX] +07).

Here the last term crf may be removed in some cases, e.g. when cov(X?, X22) <0.
These results can be sharpened under some additional assumptions on the shape

of the distribution of X. We include the proof of the following important variant

of the central limit theorem due to Klartag [123]: If the random vector X has an

isotropic, coordinatewise symmetric log-concave distribution, then, for all € S$"~!,

p(Fg,®) < ¢ Z Gi
k=1

up to some absolute constant c. Here, the average value of the right-hand side is
of order 1/n. Although the class of log-concave probability distributions is studied
in many investigations, their basic properties are discussed in this text as well. In
particular, we include the proof of the Brascamp-Lieb inequality, which serves as a
main tool in Klartag’s theorem.

Finally, in the last chapter we conclude with brief historical remarks on results
about randomized variants of the central limit theorem, in which coefficients have a
special structure.
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